Использование товарных рекомендаций на сайте
На информационном ресурсе применяются рекомендательные технологии в виде товарных рекомендаций. Товарные рекомендации — это набор виджетов с подборкой товаров, который размещается на сайте, в приложении или в e-mail с целью подбора более релевантных торговых предложений пользователю с учетом его интересов.
Существует два источника данных для рекомендаций - пользовательское поведение и товарная база магазина. Алгоритмы рекомендаций на нашем сайте являются гибридными - в зависимости от ситуации они могут использовать как поведение, так и данные по товарам.
Данные собираются посредством размещения на сайте трекинг-кодов и/или вызовов методов API.
1. Использование данных
Наибольшим влиянием в поведении обладают события взаимодействия с товарами. Активно используются события просмотра карточки товара, добавления товара в корзину и заказа товара. Кроме того, могут быть использованы данные о взаимодействии пользователей с внутренней поисковой системой магазина и данные о взаимодействии с самой системой рекомендаций.
Данные о товарной базе магазина включают все предоставляемые магазином атрибуты товаров, в частности информацию о категориях, ценах, доступности. Эти данные могут быть использованы, если пользовательского поведения недостаточно для определения интересов к товарным атрибутам, фильтрации товаров и других задач.
2. Модификации алгоритмов рекомендаций
Товарная выдача многих алгоритмов может быть ограничена только товарами определенной категории, брендом, товарами со скидкой и по другим признакам. Может быть добавлена персонализация, учитывающая интерес пользователя к свойствам товаров. Анализируется поведение пользователей - их интерес к определенным параметрам товаров: размер, цвет, вес и т.д.
Существуют версии алгоритмов, которые ограничивают влияние на товарную выдачу очень популярных товаров. Данные версии необходимы для некоторых магазинов, например, с продуктами питания.
3. Основные алгоритмы, которые используются на сайте
Популярные товары
Рекомендации популярных товаров формируются на основе всех взаимодействий посетителей с интернет-магазином. Алгоритм стремится показывать товары, с которыми чаще всего взаимодействуют, в первую очередь покупают. Алгоритм показывает наиболее разнообразные товары, что помогает лучше познакомиться с товарной базой магазина и облегчает процесс выбора.
Популярные товары из интересных пользователю категорий
Вариант сценария «Популярные товары», где пользователю показываются товары только из тех категорий, которые интересны ему в долгосрочной перспективе.
Персональные рекомендации товаров
В этом сценарии анализируется поведение пользователя и показываются товары, которые наиболее интересны ему в контексте текущей задачи. Если у человека пока нет истории просмотра, ему показываются сначала популярные товары. Если пользователь проявлял интерес к определенным товарам, алгоритм подбирает альтернативные предложения и таким образом поможет ему найти наиболее подходящий и приблизит к покупке. Если же пользователь уже что-то заказывал, то алгоритм предложит ему сопутствующие товары.
Персональные рекомендации на основе прошлых заказов
Алгоритм рекомендует пользователю товары, которые он уже покупал. Учитывается давность и частота покупок.
Новинки
Алгоритм показывает товары, отсортированные по дате поступления - от самых новых до тех, что давно в продаже. Алгоритм обеспечивает разнообразие товаров и таким образом помогает познакомиться с ассортиментом, упрощает навигацию.
Альтернативные товары
Алгоритм показывает товары, похожие на текущий товар. Подборка формируется на основе описаний и свойств товаров, а также на основе поведения других пользователей, которые интересовались этим же товаром: что они еще изучают и покупают. Поэтому алгоритм может предложить не всегда схожий по описанию, но действительно подходящий товар.
Upsell
Этот алгоритм рекомендует максимально похожие товары, но с улучшенными характеристиками и более дорогие.
Сопутствующие товары
Алгоритм показывает товары, которые дополняют текущие товары в заказе. Когда недостаточно данных по поведению пользователей (актуально для редко покупаемых и новых товаров), предлагаются товары, которые могут быть куплены совместно с учетом их свойств, принадлежности к категории и популярности.
Аксессуары
Разновидность алгоритма «Сопутствующие товары». Подбирает к текущему товару дополнительные аксессуары.
Поисковые рекомендации
В этом сценарии рекомендуются товары, которые лучше всего подходят под поисковый запрос пользователя. При их формировании алгоритм опирается на поведение пользователей, которые уже искали что-то подобное. Если таких товаров недостаточно, добавляются альтернативы к ним.
По всем вопросам по товарным рекомендациям можно обращаться на почту ООО "МАКСИДОМ":
cdt-marketing@maxidom.ru